Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
J Control Release ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703950

RESUMO

Although nanomaterial-based nanomedicine provides many powerful tools to treat cancer, most focus on the "immunosilent" apoptosis process. In contrast, ferroptosis and immunogenic cell death, two non-apoptotic forms of programmed cell death (PCD), have been shown to enhance or alter the activity of the immune system. Therefore, there is a need to design and develop nanoplatforms that can induce multiple modes of cell death other than apoptosis to stimulate antitumor immunity and remodel the immunosuppressive tumor microenvironment for cancer therapy. In this study, a new type of multifunctional nanocomposite mainly consisting of HMME, Fe3+ and Tannic acid, denoted HFT NPs, was designed and synthesized to induce multiple modes of cell death and prime the tumor microenvironment (TME). The HFT NPs consolidate two functions into one nano-system: HMME as a sonosensitizer for the generation of reactive oxygen species (ROS) 1O2 upon ultrasound irradiation, and Fe3+ as a GSH scavenger for the induction of ferroptosis and the production of ROS ·OH through inorganic catalytic reactions. The administration of HFT NPs and subsequent ultrasound treatment caused cell death through the consumption of GSH, the generation of ROS, ultimately inducing apoptosis, ferroptosis, and immunogenic cell death (ICD). More importantly, the combination of HFT NPs and ultrasound irradiation could reshape the TME and recruit more T cell infiltration, and its combination with immune checkpoint blockade anti-PD-1 antibody could eradicate tumors with low immunogenicity and a cold TME. This new nano-system integrates sonodynamic and chemodynamic properties to achieve outstanding therapeutic outcomes when combined with immunotherapy. Collectively, this study demonstrates that it is possible to potentiate cancer immunotherapy through the rational and innovative design of relatively simple materials.

2.
Biomed Pharmacother ; 174: 116562, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626518

RESUMO

Rhabdomyosarcoma (RMS), a mesenchymal tumor occurring in the soft tissue of children, is associated with a defect in differentiation. This study unveils a novel anti-tumor mechanism of dimethylaminomicheliolide (DMAMCL), which is a water-soluble derivative of Micheliolide. First, we demonstrate that DMAMCL inhibits RMS cell growth without obvious cell death, leading to morphological alterations, enhanced expression of muscle differentiation markers, and a shift from a malignant to a more benign metabolic phenotype. Second, we detected decreased expression of DLL1 in RMS cells after DMAMCL treatment, known as a pivotal ligand in the Notch signaling pathway. Downregulation of DLL1 inhibits RMS cell growth and induces morphological changes similar to the effects of DMAMCL. Furthermore, DMAMCL treatment or loss of DLL1 expression also inhibits RMS xenograft tumor growth and augmented the expression of differentiation markers. Surprisingly, in C2C12 cells DMAMCL treatment or DLL1 downregulation also induces cell growth inhibition and an elevation in muscle differentiation marker expression. These data indicated that DMAMCL induced RMS differentiation and DLL1 is an important factor for RMS differentiation, opening a new window for the clinical use of DMAMCL as an agent for differentiation-inducing therapy for RMS treatment.


Assuntos
Proteínas de Ligação ao Cálcio , Diferenciação Celular , Proliferação de Células , Regulação para Baixo , Rabdomiossarcoma , Diferenciação Celular/efeitos dos fármacos , Rabdomiossarcoma/patologia , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Nus , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia
3.
CNS Neurosci Ther ; 30(3): e14664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516781

RESUMO

AIMS: Neuroblastoma (NB) is the most common extracranial solid tumor in children, with a 5-year survival rate of <50% in high-risk patients. MYCN amplification is an important factor that influences the survival rate of high-risk patients. Our results indicated MYCN regulates the expression of SESN1. Therefore, this study aimed to investigate the role and mechanisms of SESN1 in NB. METHODS: siRNAs or overexpression plasmids were used to change MYCN, SESN1, or MyD88's expression. The role of SESN1 in NB cell proliferation, migration, and invasion was elucidated. Xenograft mice models were built to evaluate SESN1's effect in vivo. The correlation between SESN1 expression and clinicopathological data of patients with NB was analyzed. RNA-Seq was done to explore SESN1's downstream targets. RESULTS: SESN1 was regulated by MYCN in NB cells. Knockdown SESN1 promoted NB cell proliferation, cell migration, and cell invasion, and overexpressing SESN1 had opposite functions. Knockdown SESN1 promoted tumor growth and shortened tumor-bearing mice survival time. Low expression of SESN1 had a positive correlation with poor prognosis in patients with NB. RNA-Seq showed that Toll-like receptor (TLR) signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in cancer were potential downstream targets of SESN1. Knockdown MyD88 or TLRs inhibitor HCQ reversed the effect of knockdown SESN1 in NB cells. High expression of SESN1 was significantly associated with a higher immune score and indicated an active immune microenvironment for patients with NB. CONCLUSIONS: SESN1 functions as a new tumor suppressor gene via TLR signaling pathway in NB.


Assuntos
Fator 88 de Diferenciação Mieloide , Neuroblastoma , Criança , Humanos , Animais , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fatores de Transcrição/genética , Transdução de Sinais/genética , Neuroblastoma/patologia , Genes Supressores de Tumor , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Sestrinas/genética , Sestrinas/metabolismo
4.
Funct Integr Genomics ; 24(2): 58, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489049

RESUMO

Recent studies have shown that NOP2, a nucleolar protein, is up-regulated in various cancers, suggesting a potential link to tumor aggressiveness and unfavorable outcomes. This study examines NOP2's role in lung adenocarcinoma (LUAD), a context where its implications remain unclear. Utilizing bioinformatics, we assessed 513 LUAD and 59 normal tissue samples from The Cancer Genome Atlas (TCGA) to explore NOP2's diagnostic and prognostic significance in LUAD. Additionally, in vitro experiments compared NOP2 expression between Beas-2b and A549 cells. Advanced databases and analytical tools, including LINKEDOMICS, STRING, and TISIDB, were employed to further elucidate NOP2's association with LUAD. Our findings indicate a significantly higher expression of NOP2 mRNA and protein in A549 cells compared to Beas-2b cells (P < 0.001). In LUAD, elevated NOP2 levels were linked to decreased Overall Survival (OS) and advanced clinical stages. Univariate Cox analysis revealed that high NOP2 expression correlated with poorer OS in LUAD (P < 0.01), a finding independently supported by multivariate Cox analysis (P < 0.05). The relationship between NOP2 expression and LUAD risk was presented via a Nomogram. Additionally, Gene Set Enrichment Analysis (GSEA) identified seven NOP2-related signaling pathways. A focal point of our research was the interplay between NOP2 and tumor-immune interactions. Notably, a negative correlation was observed between NOP2 expression and the immune infiltration levels of macrophages, neutrophils, mast cells, Natural Killer (NK) cells, and CD8 + T cells in LUAD. Moreover, the expression of NOP2 was related to the sensitivity of various chemotherapeutic drugs. In vitro, we found that downregulating NOP2 can decrease the proliferation, migration and invasion of A549 cells. Furthermore, NOP2 can regulate Caspase3-mediated apoptosis. Collectively, particularly regarding prognosis, immune infiltration and vitro experiments, these findings suggest NOP2's potential of serving as a poor-prognostic biomarker for LUAD and aggravating the malignancy of lung adenocarcinoma cells.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Nucleares , Adenocarcinoma de Pulmão/genética , Apoptose , Biologia Computacional , Neoplasias Pulmonares/genética , tRNA Metiltransferases
5.
CNS Neurosci Ther ; 30(2): e14617, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358002

RESUMO

BACKGROUND: Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS: This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION: We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION: Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.


Assuntos
Ácido Glutâmico , Glutamina , Ácido Glutâmico/metabolismo , Aminoácidos/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo
6.
Mucosal Immunol ; 17(2): 211-225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331094

RESUMO

Allergic conjunctivitis (AC), an allergen-induced ocular inflammatory disease, primarily involves mast cells (MCs) and eosinophils. The role of neuroimmune mechanisms in AC, however, remains to be elucidated. We investigated the effects of transient receptor potential vanilloid 1 (TRPV1)-positive sensory nerve ablation (using resiniferatoxin) and TRPV1 blockade (using Acetamide, N-[4-[[6-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl]oxy]-2-benzothiazolyl] (AMG-517)) on ovalbumin-induced conjunctival allergic inflammation in mice. The results showed an exacerbation of allergic inflammation as evidenced by increased inflammatory gene expression, MC degranulation, tumor necrosis factor-α production by MCs, eosinophil infiltration and activation, and C-C motif chemokine 11 (CCL11) (eotaxin-1) expression in fibroblasts. Subsequent findings demonstrated that TRPV1+ sensory nerves secrete somatostatin (SST), which binds to SST receptor 5 (SSTR5) on MCs and conjunctival fibroblasts. SST effectively inhibited tumor necrosis factor-α production in MCs and CCL11 expression in fibroblasts, thereby reducing eosinophil infiltration and alleviating AC symptoms, including eyelid swelling, lacrimation, conjunctival chemosis, and redness. These findings suggest that targeting TRPV1+ sensory nerve-mediated SST-SSTR5 signaling could be a promising therapeutic strategy for AC, offering insights into neuroimmune mechanisms and potential targeted treatments.


Assuntos
Antineoplásicos , Conjuntivite Alérgica , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Eosinófilos , Antineoplásicos/efeitos adversos , Inflamação/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 49(1): 216-223, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403354

RESUMO

This study aims to investigate the effect of Buyang Huanwu Decoction on blood flow recovery and arteriogenesis after hindlimb ischemia in mice via the platelet-derived growth factor(PDGF) signaling pathway. Forty C57BL/6 mice were randomized into model(clean water, 10 mL·kg~(-1)·d~(-1)), beraprost sodium(positive control, 18 µg·kg~(-1)·d~(-1)), and low-, medium-, and high-dose(10, 20, and 40 g·kg~(-1)·d~(-1), respectively) Buyang Huanwu Decoction groups(n=8). The hindlimb ischemia model was established by femoral artery ligation. The mice were administrated with corresponding agents by gavage daily for 14 days after ligation. For laser Doppler perfusion imaging, the mice were anesthetized and measured under a Periscan PSI imager. The density of capillary and arterio-le in the ischemic gastrocnemius was measured using immunofluorescence staining of the frozen tissue sections. Western blot was employed to determine the expression of PDGF subunit B(PDGFB), phosphorylated mitogen extracellular kinase(p-MEK), MEK, phosphorylated extracellular signal-regulated kinase(p-ERK), and ERK. Real-time PCR was employed to determine the mRNA level of PDGFB. The Buyang Huanwu Decoction-containing serum was used to treat the vascular smooth muscle cells(VSMCs) in hypoxia at doses of 10% and 20%. The proliferation and migration of VSMCs was assessed in vitro. The results showed that compared with the model group, beraprost sodium and Buyang Huanwu Decoction enhanced the blood flow recovery, increased the capillary and arteriole density, and up-regulated the protein levels of PDGFB, p-MEK, p-ERK, and mRNA levels of PDGFB, with the medium-dose Buyang Huanwu Decoction demonstrating the most significant effect. The 10% Buyang Huanwu Decoction-containing serum enhanced the proliferation and migration of VSMCs. Our findings demonstrate that Buyang Huanwu Decoction up-regulates PDGFB transcription and activates PDGF signaling pathway to promote arteriogenesis and blood flow recovery in ischemic gastrocnemius.


Assuntos
Medicamentos de Ervas Chinesas , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-sis , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais , Isquemia/tratamento farmacológico , Membro Posterior/metabolismo , RNA Mensageiro/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
8.
Pigment Cell Melanoma Res ; 37(3): 411-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411373

RESUMO

Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults. Although primary UM can be effectively controlled, a significant proportion of cases (40% or more) eventually develop distant metastases, commonly in the liver. Metastatic UM remains a lethal disease with limited treatment options. The initiation of UM is typically attributed to activating mutations in GNAQ or GNA11. The elucidation of the downstream pathways such as PKC/MAPK, PI3K/AKT/mTOR, and Hippo-YAP have provided potential therapeutic targets. Concurrent mutations in BRCA1 associated protein 1 (BAP1) or splicing factor 3b subunit 1 (SF3B1) are considered crucial for the acquisition of malignant potential. Furthermore, in preclinical studies, actionable targets associated with BAP1 loss or oncogenic mutant SF3B1 have been identified, offering promising avenues for UM treatment. This review aims to summarize the emerging targeted and epigenetic therapeutic strategies for metastatic UM carrying specific driver mutations and the potential of combining these approaches with immunotherapy, with particular focus on those in upcoming or ongoing clinical trials.


Assuntos
Melanoma , Mutação , Neoplasias Uveais , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/terapia , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/terapia , Mutação/genética , Terapia de Alvo Molecular , Metástase Neoplásica , Animais , Imunoterapia
9.
ACS Nano ; 18(5): 4019-4037, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38253029

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance against chemotherapy and immunotherapy due to its dense desmoplastic and immunosuppressive tumor microenvironment (TME). Traditional photodynamic therapy (PDT) was also less effective for PDAC owing to poor selectivity, insufficient penetration, and accumulation of photosensitizers in tumor sites. Here, we designed a light-responsive novel nanoplatform targeting the TME of PDAC through tumor-specific midkine nanobodies (Nbs), which could efficiently deliver semiconducting polymeric nanoparticles (NPs) to the TME of PDAC and locally produce abundant reactive oxygen species (ROS) for precise photoimmunotherapy. The synthesized nanocomposite can not only achieve multimodal imaging of PDAC tumors (fluorescence and photoacoustic imaging) but also lead to apoptosis and immunogenic cell death of tumor cells via ROS under light excitation, ultimately preventing tumor progression and remodeling the immunosuppressive TME with increased infiltration of T lymphocytes. Combined with a PD-1 checkpoint blockade, the targeted PDT platform showed the best antitumor performance and markedly extended mice survival. Conclusively, this work integrating Nbs with photodynamic NPs provides a novel strategy to target formidable PDAC to achieve tumor suppression and activate antitumor immunity, creating possibilities for boosting efficacy of immunotherapy for PDAC tumors through the combination with precise local PDT.


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Fotoquimioterapia , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Midkina , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Imunoterapia , Fotoquimioterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Bioorg Med Chem Lett ; 99: 129613, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224754

RESUMO

A series of bis-isatin conjugates with lysine linker were synthesized with the aim of probing their antiproliferative potential. All the newly synthesized derivatives (0-100 µM) were first screened against liver cancer cell lines(Huh1, H22, Huh7, Hepa1-6, HepG2, Huh6 and 97H) using CCK-8 assay. Results indicated that the derivative 4d exhibited the most potent activity against Huh1 (IC50 = 17.13 µM) and Huh7(IC50 = 8.265 µM). In vivo anti-tumor study showed that compound 4d effectively inhibited tumor growth in Huh1-induced xenograft mouse model; the anti-tumor effect of compound 4d (15 mg/kg) was comparable with sorafenib (20 mg/kg). H&E staining analysis and routine blood test and blood serum biochemistry examination was performed to confirm the safety of compound 4d in xenograft models. The mechanism of action of 4d on tumor growth inhibition was further investigated by RNA-Seq analysis, which indicates a positive regulation of autophagy signaling pathway, which was further confirmed with key biomarker expression of autophagy after 4d treatment. Our results suggest that the bis-isatin conjugate compound 4d is a promising tumor inhibitory agent for some liver cancer.


Assuntos
Antineoplásicos , Isatina , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Isatina/química , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Proliferação de Células , Relação Estrutura-Atividade , Estrutura Molecular
11.
Aging (Albany NY) ; 16(2): 1581-1604, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38240702

RESUMO

Basement membrane plays an important role in tumor invasion and metastasis, which is closely related to prognosis. However, the prognostic value and biology of basement membrane genes (BMGs) in prostate cancer (PCa) remain unknown. In the TCGA training set, we used differentially expressed gene analysis, protein-protein interaction networks, univariate and multivariate Cox regression, and least absolute shrinkage and selection operator regression to construct a basement membrane-related risk model (BMRM) and validated its effectiveness in the MSKCC validation set. Furthermore, the accurate nomogram was constructed to improve clinical applicability. Patients with PCa were divided into high-risk and low-risk groups according to the optimal cut-off value of the basement membrane-related risk score (BMRS). It was found that BMRS was significantly associated with RFS, T-stage, Gleason score, and tumor microenvironmental characteristics in PCa patients. Further analysis showed that the model grouping was closely related to tumor immune microenvironment characteristics, immune checkpoint inhibitors, and chemotherapeutic drug sensitivity. In this study, we developed a new BMGs-based prognostic model to determine the prognostic value of BMGs in PCa. Finally, we confirmed that THBS2, a key gene in BMRM, may be an important link in the occurrence and progression of PCa. This study provides a novel perspective to assess the prognosis of PCa patients and provides clues for the selection of future personalized treatment regimens.


Assuntos
Neoplasias da Próstata , Microambiente Tumoral , Masculino , Humanos , Membrana Basal , Microambiente Tumoral/genética , Prognóstico , Neoplasias da Próstata/genética , Nomogramas
12.
Acta Pharmacol Sin ; 45(2): 391-404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803139

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers in the world. The therapeutic outlook for HCC patients has significantly improved with the advent and development of systematic and targeted therapies such as sorafenib and lenvatinib; however, the rise of drug resistance and the high mortality rate necessitate the continuous discovery of effective targeting agents. To discover novel anti-HCC compounds, we first constructed a deep learning-based chemical representation model to screen more than 6 million compounds in the ZINC15 drug-like library. We successfully identified LGOd1 as a novel anticancer agent with a characteristic levoglucosenone (LGO) scaffold. The mechanistic studies revealed that LGOd1 treatment leads to HCC cell death by interfering with cellular copper homeostasis, which is similar to a recently reported copper-dependent cell death named cuproptosis. While the prototypical cuproptosis is brought on by copper ionophore-induced copper overload, mechanistic studies indicated that LGOd1 does not act as a copper ionophore, but most likely by interacting with the copper chaperone protein CCS, thus LGOd1 represents a potentially new class of compounds with unique cuproptosis-inducing property. In summary, our findings highlight the critical role of bioavailable copper in the regulation of cell death and represent a novel route of cuproptosis induction.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Cobre , Neoplasias Hepáticas/tratamento farmacológico , Ionóforos , Apoptose
13.
Int Wound J ; 21(1): e14362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605359

RESUMO

The purpose of this study was to compare the reconstructive outcomes of soft-tissue defects around foot and ankle with vaccum sealing drainage (VSD) or induction membrane (IM) of cement formation and attempt to provide an optimal strategy for elderly patients. A retrospective review of all continuous patients with foot and ankle reconstruction using different flaps from October of 2016 and October of 2020 was performed. Based on the different way, the patients were divided into two groups: VSD group (n = 26) and IM group (n = 27). Outcomes were assessed according to the size of the defect, frequency of debridement procedures, hospitalization time, duration of healing, the healing rate, major amputation rate, functional outcomes and complications. Immunohistochemistry (IHC) detection of vascular endothelial growth factor (VEGF) was also be completed. We found that there was no difference in demographic characteristics, size of the defect, debridement times and functional outcomes between the two groups (p > 0.05); however, a significant difference in the wound healing time, hospitalization time and complications were noted between them(p < 0.05). The fresh granulation tissue of both groups showed abundant positive expression of VEGF. Thus, the VSD and IM are both available for foot and ankle reconstruction in elderly patients. However, the IM group offers short hospitalization time, duration of healing and lower frequency of postoperative complications. Thus, we advocate the IM for reconstruction of defects of the foot and ankle region in the elderly patients.


Assuntos
Tornozelo , Lesões dos Tecidos Moles , Humanos , Idoso , Tornozelo/cirurgia , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular , Drenagem , Extremidade Inferior/cirurgia , Lesões dos Tecidos Moles/cirurgia , Resultado do Tratamento , Transplante de Pele/métodos
14.
Br J Pharmacol ; 181(7): 1068-1090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37850255

RESUMO

BACKGROUND AND PURPOSE: Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH: Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS: The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS: BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.


Assuntos
Piroptose , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Catelicidinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/metabolismo , Calcineurina/farmacologia , Autofagia , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição
15.
J Nanobiotechnology ; 21(1): 442, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993888

RESUMO

Imaging-guided photothermal therapy (PTT) for cancers recently gathered increasing focus thanks to its precise diagnosis and potent therapeutic effectiveness. Croconaine (CR) dyes demonstrate potential in expanding utility for near infrared (NIR) dyes in bio-imaging/theranostics. However, reports on CR dyes for PTT are scarce most likely due to the short of the efficacious delivery strategies to achieve specific accumulation in diseased tissues to induce PTT. Extracellular vesicles (EVs) are multifunctional nanoparticle systems that function as safe platform for disease theragnostics, which provide potential benefits in extensive biomedical applications. Here, we developed a novel delivery system for photothermal molecules based on a CR dye that exerts photothermal activity through CDH17 nanobody-engineered EVs. The formed CR@E8-EVs showed strong NIR absorption, excellent photothermal performance, good biological compatibility and superb active tumor-targeting capability. The CR@E8-EVs can not only visualize and feature the tumors through CR intrinsic property as a photoacoustic imaging (PAI) agent, but also effectively retard the tumor growth under laser irradiation to perform PTT. It is expected that the engineered EVs will become a novel delivery vehicle of small organic photothermal agents (SOPTAs) in future clinical PTT applications.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Terapia Fototérmica , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Corantes , Técnicas Fotoacústicas/métodos , Linhagem Celular Tumoral
16.
Int Immunopharmacol ; 124(Pt B): 111037, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827057

RESUMO

In reconstructive and plastic surgery, random skin flaps are commonly utilized to treat skin abnormalities produced by a variety of factors. Flap delay procedure is commonly used to reduce flap necrosis. Due to the limitations of various conditions, the traditional surgical improvement can't effectively alleviate the skin flap necrosis. And leonurine (Leo) has antioxidant and anti-inflammatory effects. In this study, we researched the mechanism underlying the influences of varied Leo concentrations on the survival rate of random skin flaps. Our results showed that after Leo treatment, tissue edema and necrosis of the flap were significantly reduced, while angiogenesis and flap perfusion were significantly increased. Through immunohistochemistry and Western blot, we proved that Leo treatment can upregulate the level of angiogenesis, while Leo treatment significantly reduced the expression levels of oxidative stress, apoptosis and inflammation. As a result, it can significantly improve the overall viability of the random skin flaps through the increase of angiogenesis, restriction of inflammation, attenuation of oxidative stress, and reduction of apoptosis. And this protective function was inhibited by LY294002 (a broad-spectrum inhibitor of PI3K) and L-NAME (NG- nitro-L-arginine methyl ester, a non-selective NOS inhibitor). All in all, Leo is an effective drug that can activate the eNOS via the PI3K/Akt pathway. By encouraging angiogenesis, preventing inflammation, minimizing oxidative stress, and lowering apoptosis, Leo can raise the survival rate of random skin flaps. The recommended concentration of Leo in this study was 30 mg/kg.


Assuntos
Fosfatidilinositol 3-Quinases , Retalhos Cirúrgicos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Retalhos Cirúrgicos/fisiologia , Necrose/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Inflamação/metabolismo , Pele
17.
Sensors (Basel) ; 23(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687930

RESUMO

Because of their superior performance, flexible strain sensors are used in a wide range of applications, including medicine and health, human-computer interaction, and precision manufacturing. Flexible strain sensors outperform conventional silicon-based sensors in high-strain environments. However, most current studies report complex flexible sensor preparation processes, and research focuses on enhancing and improving one parameter or property of the sensors, ignoring the feasibility of flexible strain sensors for applications in various fields. Since the mechanical properties of flexible sensors can be well combined with rubber conveyor belts, in this work polydimethylsiloxane (PDMS) was used as a flexible substrate by a simple way of multiple drop coating. Graphene-based flexible strain sensor films that can be used for strain detection at the joints of steel cord core conveyor belts were successfully fabricated. The results of the tests show that the sensor has a high sensitivity and can achieve a fast response (response time: 43 ms). Furthermore, the sensor can still capture the conveyor belt strain after withstanding high pressure (1.2-1.4 MPa) and high temperature (150 °C) during the belt vulcanization process. This validates the feasibility of using flexible strain sensors in steel wire core conveyor belts and has some potential for detecting abnormal strains in steel wire core conveyor belt, broadening the application field of flexible sensors.

18.
ACS Appl Mater Interfaces ; 15(33): 39053-39063, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552210

RESUMO

Thermal therapy has been widely used in clinical tumor treatment and more recently in combination with chemotherapy, where the key challenge is the treatment resistance. The mechanism at the cellular level underlying the resistance to thermo-chemical combination therapy remains elusive. In this study, we constructed 3D culture models for glioma cells (i.e., 3D glioma spheres) as the model system to recapitulate the native tumor microenvironment and systematically investigated the thermal response of 3D glioma spheres at different hyperthermic temperatures. We found that 3D glioma spheres show high viability under hyperthermia, especially under high hyperthermic temperatures (42 °C). Further study revealed that the main mechanism lies in the high energy level of cells in 3D glioma spheres under hyperthermia, which enables the cells to respond promptly to thermal stimulation and maintain cellular viability by upregulating the chaperon protein Hsp70 and the anti-apoptotic pathway AKT. Besides, we also demonstrated that 3D glioma spheres show strong drug resistance to the thermo-chemical combination therapy. This study provides a new perspective on understanding the thermal response of combination therapy for tumor treatment.


Assuntos
Glioma , Hipertermia Induzida , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Temperatura Alta , Proteínas de Choque Térmico HSP70 , Células Tumorais Cultivadas , Linhagem Celular Tumoral , Apoptose , Microambiente Tumoral
19.
Materials (Basel) ; 16(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569931

RESUMO

Changes in loading position have a significant impact on the stress field of each vulnerable area of an orthotropic steel deck (OSD). The arc opening area of the diaphragm and the connecting area between the U-rib and the diaphragm under the moving load are prone to fatigue cracking. By comparing the stress responses under different methods, the hot spot stress (HSS) method is used as the main stress extraction method in fatigue performance evaluation. The control stress of fatigue cracking was analyzed by comparing the direction of the principal stress field with the crack direction in this experiment. According to the stress amplitude deviation under the biaxial stress state, a set of methods for evaluating the effects of in-plane biaxial fatigue was developed. An improved luffing fatigue assessment S-N curve was applied to analyze the fatigue life of the diaphragm's arc opening area. The results show that when the moving load is exactly above the connection of the deck and the web of the U-rib on one side, it is in the most unfavorable position in the transverse direction, and the diaphragm is mainly under the in-plane stress state. The longitudinal range of the stress influence line of the arc opening is approximately twice the diaphragm spacing. Two to three stress cycles are caused by one fatigue load. Fatigue crack control stress is the principal stress tangential to the arc opening's edge in this area. The normal direction of the principal stress in the model test is roughly consistent with the crack initiation direction. The variation in the stress amplitude deviation in this area is caused by changes in the action position of the moving load. When the moving load is at a certain distance from the involved diaphragm, it is reduced to zero, implying that the in-plane fatigue effect is the greatest in this area.

20.
Orthop Surg ; 15(10): 2716-2723, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644638

RESUMO

OBJECTIVE: Composite tissue loss involving the distal finger pulp and the nail is a common but challenging finger injury to restore. This study introduces a reconstruction procedure for a distal finger pulp and nail defect using a partial toenail flap transfer. METHODS: Twenty digits, including 16 thumbs, two index fingers, and two middle fingers, with composite soft tissue defects were treated with a partial toenail flap transfer from October 2015 to January 2020. Shortening revision of the great toe phalanx, a V-Y advancement flap of the toe pulp, and a local pedicle flap from a second toe transfer were used to cover the donor sites, and no skin grafts were required. Functionality was evaluated using the validated Spanish version of the Quick-DASH scale. The aesthetics of both the reconstructed and donor sites were evaluated using the Vancouver Scar Scale (VSS). The static two-point discrimination (2-PD) of the finger pulp was used as a measure of tactile agnosia. RESULTS: All donor site wounds healed well. The average follow-up time was 23.6 months (6-39 months). The mean Quick-DASH functional score was 7.1. The VSS scores were 4.02 ± 0.29 and 4.00 ± 0.38 for the reconstructed and donor sites, respectively. The static 2-PD of finger pulp was 4.5 ± 0.76 mm. The patients were satisfied with finger motion, sensory function, and aesthetic contour. CONCLUSIONS: Partial toenail flap transfer is the recommended treatment to regain motion, sensation, function, and a satisfactory aesthetic appearance when considering repairing a composite soft tissue distal finger defect with accompanying loss of the perionychium, particularly in the thumb, index finger, or middle finger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA